
TPMath User Guide
Delphi version

Jean Debord

October 29, 2003

2

Contents

1 Installation and compilation 7
1.1 Installation . 7
1.2 Compilation from the IDE . 8
1.3 Compilation from the command line 9

2 Numeric precision 11
2.1 Numeric precision . 11
2.2 Type Float . 12
2.3 Machine-dependent constants 12
2.4 Demo program . 13

3 Elementary functions 15
3.1 Constants . 15
3.2 Functional type . 16
3.3 Error handling . 16
3.4 Min, max and exchange . 17
3.5 Sign . 17
3.6 Logarithms and exponentials 17
3.7 Power function . 18
3.8 Lambert’s function . 18
3.9 Trigonometric functions . 19
3.10 Hyperbolic functions . 19
3.11 Demo programs . 20

3.11.1 Program testfunc.pas 20
3.11.2 Program testw.pas 20

4 Complex functions 21
4.1 Complex type . 21
4.2 Error handling . 21
4.3 Constants . 22
4.4 Number construction . 22

3

4.5 Sign and exchange . 22
4.6 Modulus and argument . 23
4.7 Arithmetic functions . 23
4.8 Complex roots . 23
4.9 Logarithms and exponentials 24
4.10 Power function . 24
4.11 Trigonometric functions . 24
4.12 Hyperbolic functions . 25
4.13 Demo program . 25

5 Special functions 27
5.1 Factorial . 27
5.2 Binomial coefficient . 27
5.3 Gamma function . 28
5.4 Beta function . 29
5.5 Error function . 29
5.6 Demo program . 29

6 Probability distributions 31
6.1 Binomial distribution . 31
6.2 Poisson distribution . 32
6.3 Standard normal distribution 32
6.4 Student’s distribution . 33
6.5 Khi-2 distribution . 33
6.6 Snedecor’s distribution . 34
6.7 Exponential distribution . 34
6.8 Beta distribution . 35
6.9 Gamma distribution . 35

7 Matrices and linear equations 37
7.1 Using vectors and matrices . 37
7.2 Programming conventions . 39
7.3 Copying arrays . 39
7.4 Minima and maxima . 40
7.5 Matrix transposition . 40
7.6 Gauss-Jordan elimination . 40
7.7 LU decomposition . 41
7.8 QR decomposition . 42
7.9 Singular value decomposition 43
7.10 Cholesky decomposition . 44
7.11 Demo programs . 44

4

7.11.1 Determinant and inverse of a square matrix 44
7.11.2 Gauss-Jordan method and Hilbert matrices 46
7.11.3 Gauss-Jordan, LU, QR and SVD with multiple con-

stant vectors . 47
7.11.4 LU decomposition with complex matrix 50
7.11.5 Cholesky decomposition 52

5

6

Chapter 1

Installation and compilation

This chapter explains how to install the DMath library and how to compile
a program which uses it.

1.1 Installation

To install DMath, simply extract the archive dmath.zip in a given directory,
e. g. \dmath. When the archive is extracted, you should have the following
directory structure:

• dmath

– demo

∗ fmath
∗ fourier
∗ fplot
∗ matrices
∗ mgs
∗ minfunc
∗ optim
∗ quadrit
∗ random
∗ reg
∗ regnlin

– units

∗ reg

7

Directory units contains all the DMath units. Its subdirectory reg con-
tains a library of predefined regression models.

Directory demo contains all the demo programs, distributed into several
subdirectories.

There are two types of demo programs: the command-line programs,
which must be executed from a DOS box in Windows, and the GUI appli-
cations, which have their own graphical interface. Only the programs which
draw graphics have been built as GUI applications. All others are command-
line programs. We favor such programs because the executables are very
compact and the code is easier to maintain ;-)

Command-line programs are standard *.pas files, while the main file of
any GUI application is a Delphi project (*.dpr) file. In addition, every GUI
application is located in its own subdirectory.

1.2 Compilation from the IDE

In order to compile a program from the Delphi IDE, you must specify the
path to the DMath units (e.g. \dmath\units;\dmath\units\reg, assuming
that you have installed the library in directory dmath).

In the Delphi menu, select Project, then Options, and select the Directo-
ries/Conditionals tab of the dialog box.

The path to the units must be entered in the Search path section of the
dialog box.

You can also specify which type of real number you will use. DMath
can use any of the three real types defined in Delphi: Single (4-byte real,
about 6 significant digits), Double (8-byte real, about 15 significant digits),
or Extended (10-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol:
SINGLEREAL, DOUBLEREAL or EXTENDEDREAL. This symbol is entered in the
Conditional defines section of the dialog box. If no symbol is defined, then
type Double will be automatically selected.

You can select the Default checkbox to make the modifications perma-
nent.

8

1.3 Compilation from the command line

To compile a program prog.pas or prog.dpr from the command line, you
must use a command like this in a DOS box:

dcc32 prog.pas -cc -u\dmath\units

or:

dcc32 prog.dpr -u\dmath\units

The first line is for a command-line program (as indicated by the option
-cc). The second line is for a GUI application. The option -u specifies
the path to the units. You can of course add other options, especially the -d
option which defines compiler directives. For instance, to compile in extended
precision, use:

dcc32 prog.pas -cc -u\dmath\units -dEXTENDEDREAL

Note that the computer must be able to locate the dcc32.exe file. In
other words, the complete path to this file must be included in the environ-
ment variable PATH, which is defined in the AUTOEXEC.BAT file located in the
root directory of the computer. This file should therefore contain a line like:

PATH= ... C:\PROGRA~1\BORLAND\DELPHI6\BIN; ...

(or equivalent)

If the program uses the regression units contained in the units\reg sub-
directory, you must add the reference to the -u option, for instance:

dcc32 prog.dpr -u\dmath\units;\dmath\units\reg

There are two batch files named dcompil.bat, located in the units and
demo subdirectories, which compile all units and programs in extended pre-
cision. Each file must be run from the subdirectory in which it is located.

9

10

Chapter 2

Numeric precision

This chapter explains how to set the mathematical precision for the compu-
tations involving real numbers.

2.1 Numeric precision

DMath allows you to use the three floating point types defined in Delphi:
Single (4-byte real, about 6 significant digits), Double (8-byte real, about
15 significant digits), or Extended (10-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol:
SINGLEREAL, DOUBLEREAL or EXTENDEDREAL.

The symbol may be defined on the command line, using the -d option (e.
g. dcc32 prog.pas -dEXTENDEDREAL ...) or in the IDE. See Chapter 1
(Installation and compilation) for more details.

If no symbol is defined, then type Double will be automatically selected.
It is therefore the default type.

If a program uses one or more units, it is necessary to compile the program
and its unit(s) with the same numeric precision.

Also, if you wish to compare the results given by a DMath program with
those of a reference program written in another language (e. g. Fortran),
be sure that the DMath program has been compiled with the same numeric
precision than the reference program.

11

2.2 Type Float

The unit fmath defines a type Float for real numbers. It corresponds to
Single, Double or Extended, according to the compilation options.

So, a program which uses real variables should begin with something like:

uses
fmath;

var
X : Float;

2.3 Machine-dependent constants

DMath defines 8 constants which depend on the selected numeric precision.
These constants are defined in the unit fmath.

Constant Meaning

MACHEP The smallest real number such that (1.0 + MACHEP) has a
different representation (in the computer memory) than 1.0;
it may be viewed as a measure of the numeric precision
which can be reached within a given type.

MAXNUM The highest real number which can be represented.

MINNUM The lowest positive real number which can be represented.

MAXLOG The highest real number X for which Exp(X)
can be computed without overflow.

MINLOG The lowest (negative) real number X for which Exp(X)
can be computed without underflow.

MAXFAC The highest integer for which the factorial can be computed.

MAXGAM The highest real number for which the Gamma function
can be computed.

MAXLGM The highest real number for which the logarithm
of the Gamma function can be computed.

12

2.4 Demo program

The program testmach.pas located in the demo\fmath subdirectory checks
that the machine-dependent constants are correctly handled by the computer.

This program displays the selected floating point type with its size in
bytes. It lists the values of the machine-dependent constants and computes
the following quantities:

Exp(MINLOG) Should be approximately equal to MINNUM

Ln(MINNUM) Should be approximately equal to MINLOG

Exp(MAXLOG) Should be approximately equal to MAXNUM

Ln(MAXNUM) Should be approximately equal to MAXLOG

Fact(MAXFAC)
Gamma(MAXGAM) These values should be computed without overflow.
LnGamma(MAXLGM)

Here are the results obtained with Delphi 6 in Extended mode:

Float type = Extended Size = 10 bytes

MACHEP = 1.08420217248550E-0019
MINNUM = 3.36210314311210E-4932
Exp(MINLOG) = 3.36210314311229E-4932
MINLOG = -1.13551371119330E+0004
Ln(MINNUM) = -1.13551371119330E+0004
MAXNUM = 1.18973149535723E+4932
Exp(MAXLOG) = 1.18973149535717E+4932
MAXLOG = 1.13565234062941E+0004
Ln(MAXNUM) = 1.13565234062941E+0004
MAXFAC = 1754
Fact(MAXFAC) = 1.97926189010501E+4930
MAXGAM = 1.75545500000000E+0003
Gamma(MAXGAM) = 5.92404938334683E+4931
MAXLGM = 1.04848146839019E+4928
LnGamma(MAXLGM) = 1.18962664721039E+4932

13

14

Chapter 3

Elementary functions

This chapter describes the constants, types and functions available in the unit
fmath for real variables. Functions of complex variables will be considered
in the next chapter.

3.1 Constants

The following mathematical constants are defined:

Constant Value Meaning

PI 3.14159... π
LN2 0.69314... ln 2
LN10 2.30258... ln 10
LNPI 1.14472... lnπ
INVLN2 1.44269... 1/ ln 2
INVLN10 0.43429... 1/ ln 10
TWOPI 6.28318... 2π
PIDIV2 1.57079... π/2
SQRTPI 1.77245...

√
π

SQRT2PI 2.50662...
√

2π
INVSQRT2PI 0.39894... 1/

√
2π

LNSQRT2PI 0.91893... ln
√

2π
LN2PIDIV2 0.91893... (ln 2π)/2
SQRT2 1.41421...

√
2

SQRT2DIV2 0.70710...
√

2/2
GOLD 1.61803... Golden Ratio = (1 +

√
5)/2

CGOLD 0.38196... 2 - GOLD

15

Note : The constants are defined internally with 20 to 21 significant
digits. So, they will match the highest degree of precision available (i.e. type
Extended).

3.2 Functional type

DMath defines a special type for a function of one real variable:

type
TFunc = function(X : Float) : Float;

This type is used mainly to pass a function to a subroutine.

Note : The type TFuncNVar for a function of several variables is defined
in the unit matrices.

3.3 Error handling

The global variable MathError, also defined in unit fmath, returns the error
code from the last function evaluation. It must be checked immediately after
a function call:

Y := f(X); { f is one of the functions of the library }
if MathError = FN_OK then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following:

Error code Value Meaning

FN_OK 0 No error
FN_DOMAIN -1 Argument domain error
FN_SING -2 Function singularity

FN_OVERFLOW -3 Overflow range error
FN_UNDERFLOW -4 Underflow range error

FN_TLOSS -5 Total loss of precision
FN_PLOSS -6 Partial loss of precision

16

3.4 Min, max and exchange

For the following subroutines, X and Y may be 2 integers or 2 reals:

• Function Min(X, Y) returns the lowest number.

• Function Max(X, Y) returns the highest number.

• Procedure Swap(X, Y) exchanges the 2 numbers.

3.5 Sign

For the following functions, the arguments must be real:

• Function Sgn(X) returns the sign of X, i. e. 1 if X > 0, -1 if X < 0.

The value of Sgn(0) is determined by the global boolean variable
SgnZeroIsOne. If this variable is True (which is the default), Sgn(0)
returns 1, otherwise it returns 0.

• Function DSgn(A, B) transfers the sign of B to A, so that:

DSgn(A, B) = Sgn(B) * Abs(A)

3.6 Logarithms and exponentials

The functions Expo and Log, also defined in fmath, may be used instead of
the standard functions Exp and Ln, when it is necessary to check the range
of the argument. The new function performs the necessary tests and calls
the standard function if the argument is within the acceptable limits (for
instance, X > 0 for Log(X)); otherwise, the function returns a default value
and the variable MathError is set to the appropriate error code.

Calling these functions is more time-consuming than calling the standard
Exp and Ln, because each function involves several tests and two procedure
calls (one to the function itself and another to the standard Exp or Ln).
Hence, if the program must compute lots of logarithms or exponentials, it
may be more efficient to use the standard functions Exp and Ln. In this case,
however, the error handling must be done by the main program.

The same remark applies to the other logarithmic and exponential func-
tions defined in fmath:

17

Function Definition Pascal code

Exp2(X) 2X Exp(X * LN2)
Exp10(X) 10X Exp(X * LN10)
Log2(X) log2X Ln(X) * INVLN2
Log10(X) log10 X Ln(X) * INVLN10
LogA(X, A) logAX Ln(X) / Ln(A)

Here, too, it may be more efficient to use the Pascal code inline rather
than calling the DMath function, but the error control will be lost.

3.7 Power function

The function Power(X, Y) returns XY . X and Y may be integer or real, but
if Y is real then X cannot be negative.

Note: To ensure the continuity of the function XX when X → 0, the
value 00 has been set to 1.

3.8 Lambert’s function

Lambert’s W function is the reciprocal of the function xex. That is, if y =
W (x), then x = yey. Lambert’s function is defined for x ≥ −1/e, with
W (−1/e) = −1. When −1/e < x < 0, the function has two values; the value
W (x) > −1 defines the upper branch, the value W (x) < −1 defines the lower
branch.

The function LambertW(X, UBranch, Offset) computes Lambert’s func-
tion.

• X is the argument of the function (must be ≥ −1/e)

• UBranch is a boolean parameter which must be set to TRUE for com-
puting the upper branch of the function and to FALSE for computing
the lower branch.

• Offset is a boolean parameter indicating if X is an offset from −1/e.
In this case, W (X−1/e) will be computed (with X > 0). Using offsets
improves the accuracy of the computation if the argument is near−1/e.

The code for Lambert’s function has been translated from a Fortran pro-
gram written by Barry et al (http://www.netlib.org/toms/743).

18

3.9 Trigonometric functions

In addition to the standard Pascal functions Sin, Cos and ArcTan, DMath
provides the following functions:

Function Definition

Tan(X) sinX
cosX X 6= (2k + 1)π2

ArcSin(X) arctan X√
1−X2 (−1 < X < 1)

ArcCos(X) π
2 − arcsinX (−1 < X < 1)

Pythag(X, Y)
√
X2 + Y 2

ArcTan2(Y, X) arctan Y
X

, result in [−π, π]

FixAngle(Theta) Returns the angle Theta in the range [−π, π]

Note: If (X, Y) are the cartesian coordinates of a point in the plane, its
polar coordinates are:

R := Pythag(X, Y);
Theta := ArcTan2(Y, X)

3.10 Hyperbolic functions

The following functions are available:

Function Definition

Sinh(X) 1
2(eX − e−X)

Cosh(X) 1
2(eX + e−X)

Tanh(X) sinhX
coshX

ArcSinh(X) ln(X +
√
X2 + 1)

ArcCosh(X) ln(X +
√
X2 − 1) X > 1

ArcTanh(X) 1
2 ln X+1

X−1 −1 < X < 1

19

In addition, the procedure SinhCosh(X, SinhX, CoshX) computes the
hyperbolic sine and cosine simultaneously, saving the computation of one
exponential.

3.11 Demo programs

3.11.1 Program testfunc.pas

The program testfunc.pas located in the demo\fmath subdirectory checks
the accuracy of the elementary functions.

For each function, 20 random arguments are picked, then the function is
computed, the reciprocal function is applied to the result, and the relative
error between this last result and the original argument is computed. This
error should correspond to the numeric precision used (e. g. at least 10−18

in Extended precision).

3.11.2 Program testw.pas

The program testw.pas located in the demo\fmath subdirectory checks the
accuracy of the Lambert function.

The program computes Lambert’s function for a set of pre-defined argu-
ments and compares the results with reference values. It displays the number
of exact digits found. This number should correspond with the numeric pre-
cision used (e. g. 18 to 19 digits in Extended precision).

Since the output of this program is very long, you may wish to redirect
it to a file, by typing e. g.

testw > testw.out

and then open the output file in a text editor.

This program has been translated from a Fortran program written by
Barry et al (http://www.netlib.org/toms/743).

20

Chapter 4

Complex functions

This chapter describes the constants, types and functions available in the
unit fmath for complex variables.

4.1 Complex type

Type Complex is defined as:

type
Complex = record
X, Y : Float;

end;

So, a complex variable Z is declared as follows:

uses
fmath;

var
Z : Complex;

Its real and imaginary parts are then Z.X and Z.Y

4.2 Error handling

Errors encountered while computing a complex function are handled as for
the real case, i. e. the global variable MathError is set to the error code, and
a default value is attributed to the function (see previous chapter, p. 16).

21

4.3 Constants

The following complex constants are defined:

Constant Meaning

C_infinity MAXNUM
C_zero 0
C_one 1
C_i i
C_pi π

C_pi_div_2 π/2

Note: MAXNUM is the highest representable number. See chapter 2, p. 12.

4.4 Number construction

The following functions create a complex number from either its rectangular
or polar coordinates:

• Function Cmplx(X, Y) returns the complex number X + iY

• Function Polar(R, Theta) returns the complex number R · exp(iθ)

4.5 Sign and exchange

• Function Sgn(Z) returns the sign of the complex Z, such that:

Sgn(Z) =
{

1 if <(Z) > 0 or <(Z) = 0 and =(Z) > 0
−1 if <(Z) < 0 or <(Z) = 0 and =(Z) < 0

where <(Z) and =(Z) denote the real and imaginary parts of Z, re-
spectively.

This function is used to determine in which half-plane (‘left’ or ‘right’)
of the complex plane the number Z lies.

The sign of 0 is set according to the global variable SgnZeroIsOne (See
previous chapter).

• Procedure Swap(W, Z) exchanges the two complex numbers W and Z.

22

4.6 Modulus and argument

The functions CAbs(Z) and CArg(Z) give, respectively, the modulus (or ab-
solute value) and the argument of the complex number Z, i. e. the numbers
R and θ such that Z = R · exp(iθ) with −π ≤ θ ≤ π.

If Z = X + iY , these functions are equivalent to Pythag(X, Y) and
ArcTan2(Y, X), respectively.

4.7 Arithmetic functions

The following functions are available (A and B are complex numbers):

Function Meaning Formula

CNeg(A) −A
CConj(A) A∗ A = X + iY ⇒ A∗ = X − iY
CAdd(A, B) A+B
CSub(A, B) A−B
CMult(A, B) A×B
CDiv(A, B) A/B

4.8 Complex roots

According to the following relationship:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ Z1/n = R1/n · exp
[
i

(
θ

n
+

2kπ
n

)]

a complex number has n distinct n-th roots, corresponding to k = 0 · · · (n−1)

The function CRoot(Z, K, N) returns the K-th N-th root of the complex
number Z (K and N are integers).

The function CSqrt(Z) returns the first square root of the complex num-
ber Z. It is therefore equivalent to CRoot(Z, 0, 2).

23

4.9 Logarithms and exponentials

It is obvious from the relationship below that the complex logarithm is a
multi-valued function:

Z = R · exp(iθ) = R · exp [i (θ + 2kπ)] ⇒ lnZ = lnR + i (θ + 2kπ)

The function Log(Z) returns the principal part of the logarithm, i. e. the
value corresponding to k = 0 and −π ≤ θ ≤ π.

The function Expo(Z) returns the exponential of Z, according to:

exp(X + iY) = eX(cosY + i sinY)

4.10 Power function

The function Power(Z, X) returns ZX where Z is complex and X may be
integer, real or complex.

If X is integer of real, the following formula is used:

Z = R · exp(iθ) ⇒ ZX = RX · exp(iθX)

If X is complex, the power function is computed by ZX = exp(X · lnZ).

In any case, only the principal part of the function is returned. For
instance, if N is integer, Power(Z, 1/N) is equivalent to CRoot(Z, 0, N).

4.11 Trigonometric functions

The following functions are available (where Z = X + iY):

Function Formula

CSin(Z) sinX coshY + i cosX sinhY

CCos(Z) cosX coshY − i sinX sinhY

Tan(Z) sinX cosX+i sinhY coshY
cos2X+sinh2 Y

Z 6= π
2 + kπ

ArcSin(Z)
arcsin(P −Q) + i csgn(Y − iX) ln(P +Q+

√
(P +Q)2 − 1)

P = 1
2

√
X2 + 2X + 1 + Y 2 Q = 1

2

√
X2 − 2X + 1 + Y 2

ArcCos(Z) π
2 − arcsin(Z)

CArcTan(Z) 1
2 [arctan(X, 1− Y)− arctan(−X, 1 + Y)] + 1

4i ln X2+(Y+1)2

X2+(Y−1)2 Z 6= ±i

24

4.12 Hyperbolic functions

The following functions are available (where Z = X + iY):

Function Formula

Sinh(Z) sinhX cosY + i coshX sinY

Cosh(Z) coshX cosY + i sinhX sinY

Tanh(Z) sinhX coshX+i sinY cosY
sinh2 X+cos2 Y

Z 6= i
(
π
2 + kπ

)
ArcSinh(Z) −i arcsin(iZ)

ArcCosh(Z) csgn[Y + i(1−X)] · i arccos(Z)

ArcTanh(Z) −i arctan(iZ) Z 6= ±1

4.13 Demo program

The program testcomp.pas located in the demo\fmath subdirectory checks
the accuracy of the complex functions. It is a slight modification of a program
written by E. Glynn (http://www.efg2.com/Lab). In addition to the func-
tions defined in this chapter, the program uses the Gamma function (from
unit fspec) and some number-formatting functions from unit pastring.

The program defines an array of 20 complex numbers. The tests consist
mostly of applying a function to each number, then applying the reciprocal
function to the result, in order to retrieve the original number, within the
precision of the chosen floating type.

25

26

Chapter 5

Special functions

This chapter describes the special functions available in unit fspec. Most
of them are Pascal translations of C codes from the Cephes library by S.
Moshier (http://www.moshier.net). They are used mainly to compute the
probability distributions, which will be discussed in the next chapter.

5.1 Factorial

Function Fact(N) returns the factorial of the non-negative integer N , also
noted N ! :

N ! = 1× 2× · · · ×N 0! = 1

To avoid unnecessary calculations, the factorials of the first 33 integers
are stored in a global array named FactArray. So, if N ≤ 33, it is faster to
call FactArray[N] instead of Fact(N).

The constant MAXFAC defines the highest integer for which the factorial
can be computed. It depends on the chosen floating type (See chapter 2, p.
12).

5.2 Binomial coefficient

Function Binomial(N,K) returns the binomial coefficient
(
N
K

)
, which is de-

fined by: (
N

K

)
=

N !
K!(N −K)!

0 ≤ K ≤ N

27

5.3 Gamma function

• For X real, function Gamma(X) returns the Gamma function, defined
by:

Γ(X) =
∫ ∞

0
tX−1e−tdt

This function is related to the factorial by:

N ! = Γ(N + 1)

The Gamma function is indefinite for X = 0 and for negative integer
values of X. It is positive for X > 0. For X < 0 the Gamma function
changes its sign whenever X crosses an integer value. More precisely, if
X is an even negative integer, Γ(X) is positive on the interval]X,X+1[,
otherwise it is negative.

• Function SgnGamma(X) returns the sign of the Gamma function for a
given value of X.

• Function LnGamma(X) returns the natural logarithm of the Gamma
function. Here X may be real or complex.

The constants MAXGAM and MAXLGM define the highest values for which
the Gamma function and its logarithm, respectively, can be computed (See
chapter 2, p. 12).

• Function IGamma(A, X) returns the incomplete Gamma function, de-
fined by:

1
Γ(A)

∫ X

0
tA−1e−tdt A > 0, X > 0

• Function JGamma(A, X) returns the complement of the incomplete Gamma
function, defined by:

1
Γ(A)

∫ ∞
X

tA−1e−tdt

Although formally equivalent to 1.0 - IGamma(A, X), this function
uses specific algorithms to minimize roundoff errors.

28

5.4 Beta function

• Function Beta(X, Y) returns the Beta function, defined by:

B(X,Y) =
∫ 1

0
tX−1(1− t)Y−1dt =

Γ(X)Γ(Y)
Γ(X + Y)

(Here B denotes the uppercase greek letter ‘Beta’ !)

• Function IBeta(A, B, X) returns the incomplete Beta function, de-
fined by:

1
B(A,B)

∫ X

0
tA−1(1− t)B−1dt A > 0, B > 0, 0 ≤ X ≤ 1

5.5 Error function

• Function Erf(X) returns the error function, defined by:

erf(X) =
2√
π

∫ X

0
exp(−t2)dt

• Function Erfc(X) returns the error function, defined by:

erfc(X) =
2√
π

∫ ∞
X

exp(−t2)dt

Although formally equivalent to 1.0 - Erf(X), this function uses spe-
cific algorithms to minimize roundoff errors.

5.6 Demo program

The program specfunc.pas located in the demo\fmath subdirectory checks
the accuracy of the special functions. The program has been adapted from
Numerical Recipes (http://www.nr.com), but the reference values have been
re-computed to 20 significant digits with the Maple software (http://www.
maplesoft.com) and the Gamma values for negative arguments have been
corrected.

The program computes the special functions for a set of predefined ar-
guments stored in the file specfunc.dat and compares the results to the
reference values, stored in the same file. The relative differences should be
within the precision range of the chosen floating point type.

29

30

Chapter 6

Probability distributions

This chapter describes the functions available in unit fspec to compute prob-
ability distributions.

6.1 Binomial distribution

Binomial distribution arises when a trial has to possible outcomes: ‘failure’
or ‘success’. If the trial is repeated N times, the random variable X is the
number of successes.

• Function PBinom(N, P, K) returns the probability of obtaining K suc-
cesses among N repetitions, if the probability of success is P .

Prob(X = K) =
(
N

K

)
PKQN−K with Q = 1− P

• Function FBinom(N, P, K) returns the probability of obtaining at most
K successes among N repetitions, i. e. Prob(X ≤ K). This is called
the cumulative probability function and is defined by:

Prob(X ≤ K) =
K∑
k=0

(
N

k

)
P kQN−k = 1− IB(K + 1, N −K,P)

where IB denotes the incomplete Beta function (see previous chapter).

The mean of the binomial distribution is µ = NP , its variance is σ2 =
NPQ. The standard deviation is therefore σ =

√
NPQ.

31

6.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial dis-
tribution when N → ∞ and P → 0 while the mean µ = NP remains small
(say N ≥ 30, P ≤ 0.1, NP ≤ 10)

• Function PPoisson(Mu, K) returns the probability of observing the
value K if the mean is µ. It is defined by:

Prob(X = K) = e−µ
µK

K!

• Function FPoisson(Mu, K) gives the cumulative probability function,
defined by:

Prob(X ≤ K) =
K∑
k=0

e−µ
µk

k!
= JΓ(K + 1, µ)

where JΓ denotes the complement of the incomplete Gamma function.

6.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss
distribution) corresponds to the classical bell-shaped curve. It may also be
considered as a limit of the binomial distribution whenN is sufficiently ‘large’
while P and Q are sufficiently different from 0 or 1. (say N ≥ 30, NP ≥ 5,
NQ ≥ 5).

The normal distribution with mean µ and standard deviation σ is denoted
N (µ, σ) with µ = NP and σ =

√
NPQ. The special case N (0, 1) is called

the standard normal distribution.

• Function DNorm(X) returns the probability density of the standard nor-
mal distribution, defined by:

f(X) =
1√
2π

exp
(
−X

2

2

)
The graph of this function is the bell-shaped curve.

• Function FNorm(X) returns the cumulative probability function:

Φ(X) = Prob(U ≤ X) =
∫ X

−∞
f(x)dx =

1
2

[
1 + erf

(
X

√
2

2

)]
where U denotes the standard normal variable and erf the error func-
tion.

32

• Function PNorm(X) returns the probability that the standard normal
variable exceeds X in absolute value, i. e. Prob(|U | > X).

• Function InvNorm(P) returns the valueX such that Prob(U ≤ X) = P .

6.4 Student’s distribution

Student’s distribution is widely used in Statistics, for instance to estimate
the mean of a population from a sample taken from this population. The
distribution depends on an integer parameter ν called the number of degrees
of freedom (in the mean estimation problem, ν = n − 1 where n is the
number of individuals in the sample). When ν is large (say > 30) the Student
distribution is approximately equal to the standard normal distribution.

• Function DStudent(Nu, X) returns the probability density of the Stu-
dent distribution with Nu degrees of freedom, defined by:

fν(X) =
1

ν1/2 B
(
ν
2 ,

1
2

) · (1 +
X2

ν

)− ν+1
2

where B denotes the Beta function.

• Function FStudent(Nu, X) returns the cumulative probability func-
tion:

Φν(X) = Prob(t ≤ X) =
∫ X

−∞
fν(x)dx = 1− IB

(
ν

2
,
1
2
,

ν

ν +X2

)
where t denotes the Student variable.

• Function PStudent(Nu, X) returns the probability that the Student
variable t exceeds X in absolute value, i. e. Prob(|t| > X).

6.5 Khi-2 distribution

The χ2 distribution is a special case of the Gamma distribution (see below).
It depends on an integer parameter ν which is the number of degrees of
freedom.

• Function DKhi2(Nu, X) returns the probability density of the χ2 dis-
tribution with Nu degrees of freedom, defined by:

fν(X) =
1

2
ν
2 Γ

(
ν
2

) ·X ν
2−1 · exp

(
−X

2

)
(X > 0)

33

• Function FKhi2(Nu, X) returns the cumulative probability function:

Φν(X) = Prob(χ2 ≤ X) =
∫ X

0
fν(x)dx = IΓ

(
ν

2
,
X

2

)
where IΓ denotes the incomplete Gamma function.

• Function PKhi2(Nu, X) returns the probability that the χ2 variable
exceeds X, i. e. Prob(χ2 > X).

6.6 Snedecor’s distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare
two variances. It depends on two integer parameters ν1 and ν2 which are the
degrees of freedom associated with the variances.

• Function DSnedecor(Nu1, Nu2, X) returns the probability density of
the Snedecor distribution with Nu1 and Nu2 degrees of freedom, defined
by:

fν1,ν2(X) =
1

B
(
ν1
2 ,

ν2
2

) ·(ν1

ν2

) ν1
2
·X

ν1
2 −1 ·

(
1 +

ν1

ν2
X
)− ν1+ν2

2
(X > 0)

• Function FSnedecor(Nu1, Nu2, X) returns the cumulative probability
function:

Φν1,ν2(X) = Prob(F ≤ X) =
∫ X

0
fν1,ν2(x)dx = 1−IB

(
ν2

2
,
ν1

2
,

ν2

ν2 + ν1X

)
where F denotes the Snedecor variable.

• Function PSnedecor(Nu1, Nu2, X) returns the probability that the
Snedecor variable F exceeds X, i. e. Prob(F > X).

6.7 Exponential distribution

The exponential distribution is used in many applications (radioactivity,
chemical kinetics...). It depends on a positive real parameter A.

• Function DExpo(A, X) returns the probability density of the exponen-
tial distribution with parameter A, defined by:

fA(X) = A exp(−AX) (X > 0)

34

• Function FExpo(A, X) returns the cumulative probability function:

ΦA(X) =
∫ X

0
fA(x)dx = 1− exp(−AX)

6.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random
variable defined on the unit interval [0, 1]. It depends on two positive real
parameters A and B.

• Function DBeta(A, B, X) returns the probability density of the Beta
distribution with parameters A and B, defined by:

fA,B(X) =
1

B(A,B)
·XA−1 · (1−X)B−1 (0 ≤ X ≤ 1)

• Function FBeta(A, B, X) returns the cumulative probability function:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IB(A,B,X)

6.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a ran-
dom variable defined on the positive real axis. It depends on two positive
real parameters A and B.

• Function DGamma(A, B, X) returns the probability density of the Gamma
distribution with parameters A and B, defined by:

fA,B(X) =
BA

Γ(A)
·XA−1 · exp(−BX) (X > 0)

• Function FGamma(A, B, X) returns the cumulative probability func-
tion:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IΓ(A,BX)

The χ2 distribution is a special case of the Gamma distribution, with
A = ν/2 and B = 1/2.

35

36

Chapter 7

Matrices and linear equations

This chapter describes the procedures and functions available in unit matrices
to perform vector and matrix operations, and to solve systems of linear equa-
tions.

7.1 Using vectors and matrices

Unit matrices defines the following dynamic array types:

Vector type Matrix type Base variable

TVector TMatrix Floating point number (type Float1)
TIntVector TIntMatrix Integer
TCompVector TCompMatrix Complex number (type Complex1)
TBoolVector TBoolMatrix Boolean
TStrVector TStrMatrix String

1 These types are defined in unit fmath

To use these arrays in your programs, you must:

1. Declare variables of the appropriate type, e.g.

var
V : TVector;
A : TMatrix;

2. Allocate each array before using it:

37

DimVector(V, N); { creates vector V[0..N] }
DimMatrix(A, N, M); { creates matrix A[0..N, 0..M] }

{ N, M are integer variables }

If the allocation succeeds, all array elements are initialized to zero (for
numeric arrays), False (for boolean arrays), or the null string (for
string arrays). Otherwise, the array is initialized to nil. So, it is
possible to test if the allocation has succeeded:

DimVector(V, 10000);
if V = nil then
Write(’Not enough memory!’);

The Dim... procedure may be used again to redimension the array.

Note that this allocation step is mandatory, because these dynamic
arrays are, in fact, pointers. Unlike standard Pascal arrays, it is not
sufficient to declare the variables!

3. Use arrays as in standard Pascal, noting that:

(a) You cannot use the assignment operator (:=) to copy the contents
of an array into another array. Writing B := A simply makes B
point to the same memory block than A. You must use one of the
provided Copy... procedures described below (see section 7.3).

(b) All arrays begin at index 0, so that the 0-indexed element is always
present, even if you don’t use it.

(c) A matrix is declared as an array of vectors, so that A[I] denotes
the I-th vector of matrix A and may be used as any vector.

(d) Vector and matrix parameters must be passed to functions or pro-
cedures with the var attribute when these parameters are dimen-
sioned inside the procedure. Otherwise, this attribute is not nec-
essary.

4. To deallocate an array, assign the value nil:

V := nil;

38

7.2 Programming conventions

The following conventions have been adopted for the procedures of the unit
matrices:

• Parameters Lbound and Ubound denote the lower and upper bounds
of the indices, for a vector V[Lbound..Ubound] or a square matrix
A[Lbound..Ubound, Lbound..Ubound].

• Parameters Lbound1, Ubound1 and Lbound2, Ubound2 denote the lower
and upper bounds of the indices, for a rectangular matrix A[Lbound1..
Ubound1, Lbound2..Ubound2].

• With the exception of the memory allocation routines (DimVector,
DimMatrix), the procedures do not allocate the vectors or matrices
present in their parameter lists. These allocations must therefore be
performed by the main program, before calling the procedures.

7.3 Copying arrays

The following procedures are available, for vectors and matrices of the floating
point type:

• procedure SwapRows(I, K, A, Lbound, Ubound) exchanges lines I and
K of matrix A. Here Lbound and Ubound are the bounds in the second
dimension.

• procedure SwapCols(J, K, A, Lbound, Ubound) exchanges columns
J and K of matrix A. Here Lbound and Ubound are the bounds in the
first dimension.

• procedure CopyVector(Dest, Source, Lbound, Ubound) copies vec-
tor Source into vector Dest.

• procedure CopyMatrix(Dest, Source, Lbound1, Lbound2, Ubound1,
Ubound2) copies matrix Source into matrix Dest.

• procedure CopyRowFromVector(Dest, Source, Lbound, Ubound, Row)
copies vector Source into the row Row of matrix Dest.

• procedure CopyColFromVector(Dest, Source, Lbound, Ubound, Col)
copies vector Source into the column Col of matrix Dest.

39

• procedure CopyVectorFromRow(Dest, Source, Lbound, Ubound, Row)
copies the row Row of matrix Source into vector Dest.

• procedure CopyVectorFromCol(Dest, Source, Lbound, Ubound, Col)
copies the column Col of matrix Source into vector Dest.

7.4 Minima and maxima

If X is a real or integer vector:

• function Min(X, Lbound, Ubound) returns the lowest element in X.

• function Max(X, Lbound, Ubound) returns the highest element in X.

7.5 Matrix transposition

If A is a real or integer Matrix, procedure Transpose(A, Lbound1, Lbound2,
Ubound1, Ubound2, A t) returns its transpose in A t.

7.6 Gauss-Jordan elimination

If A(n×n) and B(n×m) are two real matrices, the Gauss-Jordan elimination
can compute the inverse matrix A−1, the solution X to the system of linear
equations AX = B, and the determinant of A.

This procedure is implemented in DMath as the following function:

GaussJordan(A, B, Lbound, Ubound1, Ubound2, A_inv, X, Det)

where:

• Lbound is the lowest index in the first dimension (usually 0 or 1). It
must be the same for A and B.

• Ubound1 is the highest index in the second dimension of A.

• Ubound2 is the highest index in the second dimension of B.

• A inv is the inverse matrix.

• Det is the determinant.

The function returns one of two error codes:

40

• MAT OK (or 0) if there is no error.

• MAT SINGUL (or -1) if A is a quasi-singular matrix.

Of course, B may also be a vector (m = 1). In this case, the function
simplifies to:

GaussJordan(A, B, Lbound, Ubound, A_inv, X, Det)

In case you want only the inverse and/or the determinant, there are three
additional functions:

• InvMat(A, Lbound, Ubound, A inv) computes the inverse matrix and
returns the same error code than GaussJordan.

• InvDet(A, Lbound, Ubound, A inv, Det) computes the inverse ma-
trix and the determinant, and returns the same error code than GaussJordan.

• Det(A, Lbound, Ubound) returns the determinant. This function re-
turns 0 if the matrix is quasi-singular.

Note that both InvMat and Det perform the whole Gauss-Jordan elimi-
nation on A. So, if you need both the inverse matrix and the determinant, it
would be a waste of time to use the two functions sequentially. Use InvDet
instead.

7.7 LU decomposition

The LU decomposition algorithm factors the square matrix A as a product
LU, where L is a lower triangular matrix (with unit diagonal terms) and U
is an upper triangular matrix.

The linear system AX = B is then solved by:

LY = B (7.1)

UX = Y (7.2)

System 7.1 is solved for vector Y, then system 7.2 is solved for vector X.
The solutions are simplified by the triangular nature of the matrices.

This algorithm can also be used with complex matrices.

DMath provides the following functions:

41

• function LU Decomp(A, Lbound, Ubound) performs the LU decompo-
sition of matrix A. The matrix may be real or complex.

The matrices L and U are stored in A, which is therefore destroyed.

The function returns the error code MAT OK or MAT SINGUL

• procedure LU Solve(A, B, Lbound, Ubound, X) solves the system AX
= B, where X and B are real or complex vectors, once the matrix A has
been transformed by LU Decomp.

7.8 QR decomposition

This method factors a matrix A as a product of an orthogonal matrix Q by
an upper triangular matrix R:

A = QR

The linear system AX = B then becomes:

QRX = B

Denoting the transpose of Q by Q′ and left-multiplying by this transpose,
one obtains:

Q′QRX = Q′B

or:
RX = Q′B

since the transpose of an orthogonal matrix is equal to its inverse.

The last system is solved by making advantage of the triangular nature
of matrix R.

Note : The QR decomposition may be applied to a rectangular matrix
n × m (with n > m). In this case, Q has dimensions n × m and R has
dimensions m×m. For a linear system AX = B, the solution minimizes the
norm of the vector AX - B. It is called the least squares solution.

DMath provides the following functions:

• function QR Decomp(A, Lbound, Ubound1, Ubound2, R) performs the
QR decomposition on the input matrix A.

The matrix Q is stored in A, which is therefore destroyed.

The function returns the code MAT OK or MAT SING.

42

• procedure QR Solve(Q, R, B, Lbound, Ubound1, Ubound2, X) solves
the system QRX = B.

7.9 Singular value decomposition

Singular value decomposition (SVD) factors a matrix A as a product:

A = USV′

where U et V are orthogonal matrices. S is a diagonal matrix. Its diagonal
terms Sii are all ≥ 0 and are called the singular values of A. The rank of A
is equal to the number of non-null singular values.

• If A is a regular matrix, all Sii are > 0. The inverse matrix is given
by:

A−1 = (USV′)−1 = (V′)−1S−1U−1 = V × diag(1/Sii)×U′

since the inverse of an orthogonal matrix is equal to its transpose.

So the solution of the system AX = B is given by X = A−1B

• If A is a singular matrix, some Sii are null. However, the previous
expressions remain valid provided that, for each null singular value,
the term 1/Sii is replaced by zero.

It may be shown that the solution so calculated corresponds:

– in the case of an under-determined system, to the vector X having
the least norm.

– in the case of an impossible system, to the least-squares solution.

Note : Just like the QR decomposition, the SVD may be applied to a
rectangular matrix n × m (with n > m). In this case, U has dimensions
n×m, S and V have dimensions m×m. For a linear system AX = B, the
SVD method gives the least squares solution.

DMath provides the following functions:

• function SV Decomp(A, Lbound, Ubound1, Ubound2, S, V) performs
the singular value decomposition on the input matrix A.

The matrix U (such that A = USV’) is stored in A, which is therefore
destroyed.

The function returns one of the following error codes:

43

– MAT OK (or 0) if all goes well.

– MAT NON CONV (or -2) if the iterative process does not converge.

• procedure SV SetZero(S, Lbound, Ubound, Tol) sets to zero the sin-
gular values Sii which are lower than a threshold value Tol which is
defined by the user. This procedure must be used when solving a sys-
tem with a near-singular matrix.

• procedure SV Solve(U, S, V, B, Lbound, Ubound1, Ubound2, X) solves
the system USV’X = B.

• procedure SV Approx(U, S, V, Lbound, Ubound1, Ubound2, A) ap-
proximates a matrix A by the product USV’, after the lowest singular
values have been set to zero by SV SetZero.

7.10 Cholesky decomposition

The symmetric matrix A is said to be positive definite if, for any vector x,
the product x′Ax is positive.

For such matrices, it is possible to find a lower triangular matrix L such
that:

A = LL′

L can be viewed as a kind of ‘square root’ of A.

DMath provides the function Cholesky(A, Lbound, Ubound, L) which
performs the Cholesky decomposition on A and returns one of the following
error codes:

• MAT OK (or 0) if there is no error.

• MAT NOT PD (or -3) if A is not positive definite.

7.11 Demo programs

7.11.1 Determinant and inverse of a square matrix

The demo program detinv.pas computes the determinant and inverse of
a square matrix. The matrix is stored in an ASCII file with the following
structure :

• Line 1 : size of matrix (N)

44

• Lines 2 to (N + 1) : matrix

The default file matrix1.dat is an example with N = 4.

Procedure ReadMatrix reads the data file. Note that the matrix is di-
mensioned inside the procedure, hence the var attribute.

procedure ReadMatrix(FileName : String;
var A : TMatrix;
var N : Integer);

var
F : Text; { Data file }
I, J : Integer; { Loop variables }

begin
Assign(F, FileName);
Reset(F);
Read(F, N);
DimMatrix(A, N, N);
for I := 1 to N do
for J := 1 to N do
Read(F, A[I,J]);

Close(F);
end;

The determinant and inverse are computed with the InvDet function,
then the inverse matrix is re-inverted with the InvMat function.

{ Compute inverse matrix and determinant using the InvDet function }
if InvDet(A, 1, N, A_inv, Det) <> MAT_OK then

begin
WriteLn(’Singular matrix!’);
Halt;

end;

{ Write results }

{ Reinvert inverse matrix using the InvMat function }
if InvMat(A_inv, 1, N, A) = MAT_OK then

{ Write results }

Note : It was considered that the matrix begins at index 1. If the matrix
begun at index 0, we should write InvDet(A, 0, N, A inv, Det) etc.

Results obtained with file matrix1.dat are the following:

45

Original matrix :

1.000000 2.000000 0.000000 -1.000000
-1.000000 4.000000 3.000000 -0.500000
2.000000 2.000000 1.000000 -3.000000
0.000000 0.000000 3.000000 -4.000000

Inverse matrix :

-1.952381 0.190476 1.571429 -0.714286
0.761905 0.047619 -0.357143 0.071429
-1.904762 0.380952 1.142857 -0.428571
-1.428571 0.285714 0.857143 -0.571429

Determinant = -21.000000

Reinverted inverse matrix :

1.000000 2.000000 0.000000 -1.000000
-1.000000 4.000000 3.000000 -0.500000
2.000000 2.000000 1.000000 -3.000000
0.000000 -0.000000 3.000000 -4.000000

7.11.2 Gauss-Jordan method and Hilbert matrices

The demo program syseq.pas tests the Gauss-Jordan method by solving a
series of Hilbert systems of increasing order. Such systems have matrices of
the form:

A =



1 1/2 1/3 1/4 · · · 1/N
1/2 1/3 1/4 1/5 · · · 1/(N + 1)
1/3 1/4 1/5 1/6 · · · 1/(N + 2)
1/4 1/5 1/6 1/7 · · · 1/(N + 3)
· · · · · · · · · · · · · · · · · ·

1/N 1/(N + 1) 1/(N + 2) 1/(N + 3) · · · 1/(2N − 1)


Each element of the constant vector B is equal to the sum of the terms

in the corresponding line of the matrix :

Bi =
N∑
j=1

Aij

46

The solution of such a system is:

X = [111 · · · 1]′

The determinant of the Hilbert matrix tends towards zero when the order
increases. The program stops when the determinant becomes too low with
respect to the numerical precision of the floating point numbers. This occurs
at order 15 in Extended precision.

The main program has the following form:

{ Initialize }
N := 1;
ErrCode := 0;

{ Main loop }
while ErrCode = 0 do

begin
{ Set system order }
Inc(N);

{ Allocate (or re-allocate) vectors and matrices }
DimMatrix(A, N, N);
DimVector(B, N);
DimMatrix(A_inv, N, N);
DimVector(X, N);

{ Generate Hilbert system of order N }
Hilbert(A, B, N);

{ Solve Hilbert system }
ErrCode := GaussJordan(A, B, 1, N, A_inv, X, Det);

{ Write solution }
end;

7.11.3 Gauss-Jordan, LU, QR and SVD with multiple
constant vectors

The demo programs syseq gj.pas, syseqlu.pas, syseq qr.pas and syseqsvd.pas
solve a series of linear systems with the same system matrix and several con-
stant vectors, by using the Gauss-Jordan, LU decomposition, QR decompo-
sition and singular value decomposition algorithms.

47

The data are stored in an ASCII file with the following structure:

• Line 1 : size of matrix (N)

• Lines 2 to (N + 1) : matrix

• Line N + 2 : number of constant vectors (M)

• Lines (N + 3) to (2N + 2) : constant vector (one per column)

The default file matrix2.dat is an example file with N = 4 and M = 5.

These data are read by the following code:

Assign(F, ’matrix2.dat’);
Reset(F);

{ Read matrix A }
Read(F, N);
DimMatrix(A, N, N);
for I := 1 to N do
for J := 1 to N do
Read(F, A[I,J]);

{ Read matrix B }
Read(F, M);
DimMatrix(B, N, M);
for I := 1 to N do
for J := 1 to M do
Read(F, B[I,J]);

With GaussJordan the whole matrix B can be passed to the function:

{ Dimension inverse matrix and solution matrix }
DimMatrix(A_inv, N, M);
DimMatrix(X, N, M);

{ Solve system }
case GaussJordan(A, B, 1, N, M, A_inv, X, D) of
MAT_OK : WriteMatrix(’Solution vectors’, X, N, M);
MAT_SINGUL : Write(’Singular matrix!’);

end;

48

With other methods, only one vector can be passed to the function. Thus
we use two auxiliary vectors B1 and X1 which receive, respectively, the current
columns of B and X:

DimMatrix(X, N, M);

DimVector(B1, N);
DimVector(X1, N);

{ Perform LU decomposition of A }
if LU_Decomp(A, 1, N) <> MAT_OK then
begin
Write(’Singular matrix!’);
Halt;

end;

{ Solve system for each constant vector }
for I := 1 to M do
begin
CopyVectorFromCol(B1, B, 1, N, I);
LU_Solve(A, B1, 1, N, X1);
CopyColFromVector(X, X1, 1, N, I);

end;

With SVD, the matrix is considered singular when some singular values
are lower than a given fraction of the highest one. This fraction is defined
in the program by the constant TOL, arbitrarily set to 10−8. These singular
values must be set to zero before calling procedure SV Solve:

{ Perform SV decomposition of A
Note that U is stored in place of A }

if SV_Decomp(A, 1, N, N, S, V) <> MAT_OK then
begin
Write(’Non-convergence of singular value decomposition!’);
Halt;

end;

{ Set the lowest singular values to zero }
SV_SetZero(S, 1, N, TOL);

{ Solve system for each constant vector }

49

for I := 1 to M do
begin

CopyVectorFromCol(B1, B, 1, N, I);
SV_Solve(A, S, V, B1, 1, N, N, X1);
CopyColFromVector(X, X1, 1, N, I);

end;

With the file matrix2.dat the four programs give the same results:

System matrix :

2.000000 1.000000 5.000000 -8.000000
7.000000 6.000000 2.000000 2.000000
-1.000000 -3.000000 -10.000000 4.000000
2.000000 2.000000 2.000000 1.000000

Constant vectors :

0.000000 -15.000000 14.000000 -13.000000 5.000000
17.000000 50.000000 1.000000 84.000000 30.000000
-10.000000 -5.000000 -12.000000 -51.000000 -15.000000
7.000000 17.000000 1.000000 37.000000 10.000000

Solution vectors :

1.000000 2.000000 1.000000 4.000000 0.000000
1.000000 5.000000 -1.000000 5.000000 5.000000
1.000000 0.000000 1.000000 6.000000 0.000000
1.000000 3.000000 -1.000000 7.000000 0.000000

7.11.4 LU decomposition with complex matrix

The demo program syseqc.pas solves a system of linear equations with
complex coefficients by the LU method. The system is stored in a data file
with the following structure:

• Line 1 : size of matrix (N)

• Lines 2 to (N + 1) : matrix, followed by constant vector

Complex numbers are given in rectangular form: real part, followed by
imaginary part.

50

The file matrix3.dat is an example data file with N = 2. It corresponds
to the system: [

6 + 5i −6
−6 8− 4i

] [
z1

z2

]
=
[

10
0

]

The following code reads the matrix, making use of function Cmplx from
unit fmath to build the complex numbers:

for I := 1 to N do
begin
{ Read line I of matrix }
for J := 1 to N do
begin
Read(F, X, Y);
A[I,J] := Cmplx(X, Y);

end;
{ Read element I of constant vector }
Read(F, X, Y);
B[I] := Cmplx(X, Y);

end;

Then the system is solved by calling the complex version of the LU func-
tions:

{ Perform LU decomposition of A. If successful, solve system }
if LU_Decomp(A, 1, N) = 0 then

begin
LU_Solve(A, B, 1, N, X);
{ Write solution }

end
else

Write(’Singular matrix!’);

With the file matrix3.dat the results are:

System matrix :

6.0000 + 5.0000 * i -6.0000 + 0.0000 * i
-6.0000 + 0.0000 * i 8.0000 - 4.0000 * i

51

Constant vector :

10.0000 + 0.0000 * i
0.0000 + 0.0000 * i

Solution vector :

1.5000 - 2.0000 * i
1.5000 - 0.7500 * i

7.11.5 Cholesky decomposition

The demo program cholesk.pas performs the Cholesky decomposition of a
positive definite symmetric matrix. The matrix is stored in an ASCII file,
as for detinv.pas (§ 7.11.1 p. 44). The file matrix4.dat is an example
file with N = 3. After reading the data, the matrix is decomposed then the
program computes the product LL’ which must give the original matrix:

case Cholesky(A, 1, N, L) of
MAT_OK : { Compute LL’ and write results }
MAT_NOT_PD : { Matrix is not positive definite }

end;

With the file matrix4.dat the following results are obtained:

Original matrix :

60.000000 30.000000 20.000000
30.000000 20.000000 15.000000
20.000000 15.000000 12.000000

Cholesky factor (L) :

7.745967 0.000000 0.000000
3.872983 2.236068 0.000000
2.581989 2.236068 0.577350

Product L * L’ :

60.000000 30.000000 20.000000
30.000000 20.000000 15.000000
20.000000 15.000000 12.000000

52

